Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1] Output: 1
Example 3:
Input: nums = [5,4,-1,7,8] Output: 23
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
/* | |
Framework DP | |
1. function | |
dp[i]: max sub array's sum, till end at i index | |
max(dp[i]): answer | |
2. relation | |
dp[i] = max(dp[i-1] + nums[i], nums[i]) | |
3. base | |
dp[0] = nums[0] | |
*/ | |
int maxSubArray(vector<int>& nums) { | |
int n = nums.size(); | |
vector<int> dp(n); | |
dp[0] = nums[0]; | |
int ans = max(INT_MIN, dp[0]); | |
for(int i = 1; i < n; i++){ | |
dp[i] = max(dp[i-1] + nums[i], nums[i]); | |
ans = max(ans, dp[i]); | |
} | |
return ans; | |
} | |
}; |
No comments:
Post a Comment