Sunday, March 6, 2022

LeetCode 918. Maximum Sum Circular Subarray

 918. Maximum Sum Circular Subarray


Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.

circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1k2 <= j with k1 % n == k2 % n.

 

Example 1:

Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.

Example 2:

Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.

Example 3:

Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.

 

Constraints:

  • n == nums.length
  • 1 <= n <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104


class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
int n = nums.size();
// find min & max sub array
int min_sum = nums[0];
int min_pre = nums[0];
int max_sum = nums[0];
int max_pre = nums[0];
for(int i = 1; i < n; i++){
// min
int min_cur = min(min_pre + nums[i], nums[i]);
min_pre = min_cur;
min_sum = min(min_sum, min_cur);
// max
int max_cur = max(max_pre + nums[i], nums[i]);
max_pre = max_cur;
max_sum = max(max_sum, max_cur);
}
// sum
int sum = 0;
for(auto x: nums)
sum += x;
return sum == min_sum ? max_sum : max(max_sum, sum - min_sum);
}
};

No comments:

Post a Comment